Data Visualisation | How to Analyse and Effectively Communicate Your Data

Data Visualisation | How to Analyse and Effectively Communicate Your Data


There is a last mile problem that
exists in data science. To put it simply, companies aren’t
getting the value from data science that they originally expected.
Efforts fall short in the last mile when it comes to explaining the
results to decision-makers. This problem leaves both data scientists
and c-level executives frustrated. To help fix this issue, data scientists
need to become excellent storytellers. They need to be able to combine
data, visuals and a great narrative to persuade an audience to
make specific strategic moves. That’s why data communication
is so important! So in this video we are going to
take a look at how data scientists can communicate better with
stakeholders and master the art of persuasion using data
visualisation and storytelling. Hey guys! My name is Judit, I work in the
data science team here at Growth Tribe. Like I said, in order to bridge this gap with
decision-makers, data scientists need to upskill themselves and combine their
expertise in different key domains such as data querying, analysis
and visualisation. To make sure the team has the
potential to carry out an analysis from data until tangible business impact,
we advise to keep in mind the three foundational steps of data science.
What the consultants like to label as advanced analytics.
Let’s demystify this term. The first step is Descriptive Analytics,
which is all about processing and analysing past data, trying to answer all
the questions on the past: What happened? How many units did we sell? Or how many
unique website visitors did we have? A lot of companies limit their data
analysis to this stage. However, they might risk to be slow and reactive
instead of proactive if they just focus on historical data. The second step is Predictive, where
we can use different machine learning solutions and forecasting techniques in
order to anticipate what could happen next. We can try to predict the future
or uncover hidden patterns. Last, but definitely not least, comes the
Prescriptive part – or in other words, let’s get down to business!
This is the stage which requires the most diverse skill set as we need to be
able to understand, evaluate, assess and interpret the results of the
predictive algorithms. Moreover, we need to translate all these
data insights back to the original business case and we need to be able
to recommend strategic implications and tangible actions to take. Ideally, in an easy, understandable and
engaging way so we can grab the attention of key stakeholders
and decision makers. Do you need a framework
to get started? We have a video about our A.I.
canvas which shall help you to build your first data project from the
original business scenario until outlining the next strategic steps
to take after the analysis. To help the entire process I will give
you some tips on data visualisation which can help you a lot at the descriptive
part to understand which data you need work with, but also in the prescriptive part
when it’s time to present your insights and solutions to an audience. We turn to data visualisation techniques
because they can help to understand the information faster, learn better and
remember more easily later on. There are plenty of options for
different tools to visualise data such as Tableau, Power BI,
Looker or Google Data Studio. The choice is becoming overwhelming
with a lot of great competitors. In case you struggle to choose the
best one for your company, I advise you to take a look at Gartner’s
Magic Quadrant for BI tools where they provide a nice comparison on
these tools based on their ability to execute and the completeness of their vision.
If you want to take your visuals to the next level, you must master the art
of matching the right chart with the message you want to convey.
Here’s a website to help you with that. You can get some guidance on the
right visual you need depending on the type of data you want to represent
or the overall purpose of your slide, for example, ranking evolution or
distribution. And there is a bonus: for each visual, for example take this heat
map, you can also directly get the R or Python gallery and start
exploring the code yourself. A typical challenge you may face is to
choose between a pie chart or a bar graph when you want to illustrate a category.
For example, the country of origin of your customers. While I see a lot
of pie charts used for this scenario, a horizontal bar plot might be more
accurate. On a pie chart it is difficult to effectively communicate the
information or have a quick understanding of the magnitude of the
different categories. Especially if we try to put all this in 3d which may give a
completely false image on the proportions. On the other hand, with a bar graph it
is far more simple to quickly overview the category labels and also to assess the
magnitude and compare them to each other. No matter what the visual is,
here are a few tips to follow. Always start from the original problem. What
is the situation you would like to illustrate? And what are the key variables in your
data set you use to convey that message? Next, keep it simple. Do not visualise
to confuse, the goal is the opposite. We want to speed up the cognition.
Next, always label your axes! And last, use additional signs, visual cues, to
help your audience understand the graph. Now, I’ll hand you over to Juan who
is going to cover data storytelling. A data scientist with a visualisation
tool is like a child in a candy store. They want to try everything in every
colour and then comes the puking. The data puking. They show graph after
graph until they bore you to death. This is where the third element
of communication comes in. They have the data, they have the visuals,
but they’re missing the narrative. You have to find a story that
conveys the results. if you have a great story that has nothing
to do with the numerical findings, you’re basically lying.
So don’t do that. The story must come from the data.
Are you struggling to find a story? Good! There should be struggle.
Conflict is the basis of every story. And I know what you’re thinking.
“Oh, I cannot present conflict to my boss. I need to say that I’m amazing and my
team is so supportive and the project is so ambitious…” Let me tell you something.
You lost your boss already. Fortunately, storytellers know how to
channel conflict into a good structure. We just need to borrow their tools.
The way to design a proper story is to escalate the conflict until we reach a climax:
a moment when the story is resolved and there is a definitive change.
You might have heard of this before, it’s the three-act structure. Act 1: you set the conflict.
Act 2: you escalate the conflict until there seems to be no way out.
Act 3: you solve the conflict or you die trying. So we have setting,
development and resolution. Does this look familiar? This is not far
from the three steps to data analytics. In the first act you explain how you set
the project and describe the data set. In the second, you predict what’s going to
happen to your business. And finally, in act three, you make your business
decisions. Are you still not convinced? Good. Because we need the final
ingredient. We need somebody to relate to in the story. Normally it would
be you, but it can also be your team, your company or your clients.
If you’re the protagonist of the story, use all the struggle you’ve been
through to make the project work. Don’t be pessimistic, acknowledge
the victories as well. That will give you the nice variations to
engage the audience. For example, let’s say you’re
doing a project about churn. You try to get the data from the warehouse,
but you don’t have permission. You finally get the data but they’re
not clean. you establish the period of your analysis, but then you
have to consider seasonality. Use all those difficulties and how you
solve them to create an entertaining story. So these are our three tips. First, use
data, visuals and narrative together. Visuals to help them understand
and a story to engage them. Second, use the three-act structure to
connect to the three steps of data analytics. And third, have a defined character
your audience will root for. This process will help you solve
the last mile problem. Did you enjoy this video? Then please
like, comment and subscribe. If you didn’t like it, that’s alright.
That’s conflict. Use it in your next story. Bye!

Comments

  1. Post
    Author
  2. Post
    Author
  3. Post
    Author
  4. Post
    Author
  5. Post
    Author
    Maurits Schroder

    Nice video! Was familiar with the 3 acts in storytelling, but I like how it's being linked to the three steps of data analytics 🙂

  6. Post
    Author
  7. Post
    Author
  8. Post
    Author
  9. Post
    Author
    Mattias Björk

    Great video guys! Juan talks so fast I needed to slow down the video to make it normal. Love your tips and tricks 👏🏻💎

  10. Post
    Author
    Nergis Baci

    Hi Growth Tribe team! I would like to leave a feedback about this video. I found the information very useful but the woman and the man were speaking very fast, like they just wanted to say all they had to say and get rid of it. It it be better if they could talk a little more slowly so we the audience can digest the information better (idk if anyone else is same concern as me). Now I know that we can slow down the video speed from the YouTube options but then the speakers would sound like robots and I believe it would ruin the quality of the video. I hope you can take this in consideration. Thanks again for sharing such useful content for free.

  11. Post
    Author
  12. Post
    Author
  13. Post
    Author
    Wiljun Bangi

    This is really really great! all my struggles are solved and carefully explained in just a span of 7 minutes! you guys are great!

  14. Post
    Author
    Felipe Pupe

    Thanks for the video! Very nice and structured content! I'd love to see tutorial videos about the tools you mentioned… just an idea for the channel! Cheers 🙂

  15. Post
    Author

Leave a Reply

Your email address will not be published. Required fields are marked *